Surface Luttinger arcs in Weyl semimetals
نویسندگان
چکیده
Weyl semimetals famously host a surface topological metal containing open Fermi arcs instead of closed surfaces. Here, the authors predict another feature, Luttinger arcs, that form loops with in undoped semimetals. are common, albeit experimentally inaccessible, for strongly interacting electrons. they occur even without interactions and switch places different terminations -- property exploit to pinpoint Co Sn Co${}_{3}$Sn${}_{2}$S${}_{2}$.
منابع مشابه
Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals.
In a magnetic field, electrons in metals repeatedly traverse closed magnetic orbits around the Fermi surface. The resulting oscillations in the density of states enable powerful experimental techniques for measuring a metal's Fermi surface structure. On the other hand, the surface states of Weyl semimetals consist of disjoint, open Fermi arcs raising the question of whether they can be observed...
متن کاملQuantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals
We re-examine the question of quantum oscillations from surface Fermi arcs and chiral modes in Weyl semimetals. By introducing two tools--semiclassical phase-space quantization and a numerical implementation of a layered construction of Weyl semimetals--we discover several important generalizations to previous conclusions that were implicitly tailored to the special case of identical Fermi arcs...
متن کاملDistinct Evolutions of Weyl Fermion Quasiparticles and Fermi Arcs with Bulk Band Topology in Weyl Semimetals.
The Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the realization of chiral Weyl fermions as quasiparticles in the bulk and the formation of Fermi arc states on the surfaces. Here, we demonstrate that the...
متن کاملPhotocurrents in Weyl semimetals
Ching-Kit Chan,1 Netanel H. Lindner,2 Gil Refael,3 and Patrick A. Lee1 1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 2Physics Department, Technion, 320003 Haifa, Israel 3Institute of Quantum Information and Matter and Department of Physics, California Institute of Technology, Pasadena, California 91125, USA (Received 13 August 2016; revised m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2022
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physrevb.106.l081112